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Abstract—The ConfliLPC framework introduces an innovative
integration of Logits and Parameter Calibration (LPC) with
the ConfliBERT model, tailored specifically for the nuanced
analysis of political conflict and violence. This paper details
the development and application of ConfliLPC, highlighting its
robust capability to adapt to evolving data landscapes without
succumbing to catastrophic forgetting (CF), a common challenge
in machine learning models applied to dynamic domains such as
political science. ConfliLPC enhances accuracy and adaptability
by continually adjusting its parameters to accommodate new
information while retaining valuable historical insights. The
framework has been rigorously tested across various conflict
scenarios, demonstrating superior performance in real-time anal-
ysis and predictive tasks. This work serves as a significant
contribution to the fields of political science, conflict research, and
applied machine learning, providing a powerful tool for analysts
and policymakers engaged in the understanding and resolution of
political conflict. The experimental results highlight the efficiency
of the ConfliLPC method and its capability to minimize CF. Our
code is publicly available '.

Index Terms—continual learning, catastrophic forgetting, nat-
ural language processing, political conflict analysis

I. INTRODUCTION

The dynamic landscape of global politics, with conflicts
involving diverse actors, demands tools that understand his-
torical data and adapt to new, unexpected developments. This
need mirrors the concept of continual learning in machine
learning, where systems learn from a stream of continuously
changing data while retaining previously acquired knowledge.
During the 2014 Ukrainian crisis [1], analysts using traditional
static models faced challenges adapting to new types of data
stemming from Russian cyber attacks and other facets of the
conflicts in Crimea and Eastern Ukraine. New events, along
with new political actors, required manual recalibration of
models to maintain accuracy.

Multi-tasked Learning (MTL) is a strategic machine learn-
ing approach that improves models’ generalization and effi-

Thttps://github.com/Xiaodi- Li/ConfliLPC
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ciency by training them on multiple related tasks simultane-
ously [2]. This method exploits the commonalities between
tasks to construct a shared model architecture, where layers
common to all tasks learn general features and task-specific
layers adapt to the particularities of each task. For example,
there are 3 different tasks binary classification, multi-class
classification, and multi-label classification. Multi-task learn-
ing will assign different layers for different tasks and learn
the three tasks simultaneously. MTL not only boosts model
performance by leveraging shared information and reducing
the risk of overfitting, but it also enhances computational
efficiency by using fewer parameters than would be necessary
for separate models for each task. Applied widely in fields
like natural language processing and computer vision, MTL
is particularly advantageous in environments requiring diverse
outputs and where data for some tasks may be limited.

Following the principles of MTL, Continual Learning (CL)
presents a different but complementary approach, focusing on
the ability of a model to learn continuously from a stream of
data while retaining previously acquired knowledge. Unlike
MTL, which trains on multiple tasks simultaneously, CL trains
on tasks sequentially, updating its knowledge without the need
to retain all past data. This method is crucial for applications
where data arrives in an ongoing manner or where it is
impractical to store all historical data. CL techniques such
as experience replay, elastic weight consolidation, and pro-
gressive neural networks are designed to prevent catastrophic
forgetting (CF), thus enabling a model to adapt to new tasks or
data while maintaining proficiency in previously learned tasks
[3].

The ConfliLPC framework integrates Logits and Parameter
Calibration (LPC) [4] with the ConfliBERT [5] model specif-
ically designed for political conflict and violence texts. Con-
fliBERT, adept at handling domain-specific nuances through
extensive pre-training, is enhanced by LPC to continually
refine its predictive performance. This integration allows
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ConfliLPC to adapt effectively to new data, similar to how
CL systems incorporate new knowledge without forgetting
existing information. This represents a significant advancement
in NLP applications within political science, providing a robust
framework that dynamically adapts to the changing nature of
political conflicts.

The dynamic adaptability of ConfliLPC is crucial in real-
world applications where political landscapes continually
evolve. Traditional models often fail to capture the subtleties
and complexities of political language as contexts shift, which
can lead to degraded performance over time. ConfliLPC lever-
ages ongoing calibration to adjust its parameters, ensuring
consistent performance even as the nature of political discourse
changes. This makes it an invaluable tool for political analysts
and policymakers who require up-to-date, accurate assess-
ments of political environments for making timely decisions.

The contributions of ConfliLPC are threefold: (1) Con-
fliLPC is specifically designed to continually adapt to new
conflict-related data, enabling it to process evolving political
events without the need for frequent retraining. This capability
is essential for maintaining the relevance and accuracy of
conflict analysis models in rapidly changing global scenarios;
(2) ConfliLPC fine-tunes the sensitivity and specificity of the
ConfliBERT model based on incoming data. This calibration
addresses shifts in discourse, ensuring that the model remains
robust across different contexts and time periods; (3) Con-
fliLPC demonstrates robust performance across all evaluated
tasks and significantly reduces forgetting, maintaining its ef-
fectiveness over extensive periods and diverse data streams.

II. BACKGROUND
A. Continual Learning

Continual learning, also known as lifelong learning, rep-
resents a vital approach in the domain of machine learning,
where algorithms are developed to progressively acquire, fine-
tune, and preserve knowledge over time. This paradigm is
particularly critical because it addresses a major flaw com-
monly observed in traditional machine learning models known
as catastrophic forgetting. Catastrophic forgetting (CF) occurs
when a model, upon learning new information, tends to lose
the information it had learned previously.

The overarching aim of continual learning is to mimic the
human capacity to persistently gather and refine knowledge
throughout the life of an individual without substantial loss
of earlier acquired information. This capability is particularly
crucial in scenarios where the data environment continuously
evolves, or where systems must adapt seamlessly to new data
[6]. Such adaptive behavior is imperative for the effective,
dynamic deployment of Al systems in real-world conditions.

To overcome the challenges of continual learning, several
innovative strategies have been developed: regularization tech-
niques: These methods are designed to maintain the stabil-
ity of previously learned knowledge while allowing for the
acquisition of new information. Techniques such as Elastic
Weight Consolidation (EWC) apply a penalty to the learning
algorithm, which discourages drastic alterations to weight
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parameters critical for prior tasks [7]. Another noteworthy
method is Synaptic Intelligence (SI), which dynamically evalu-
ates the significance of each parameter throughout the learning
process, ensuring that important parameters are preserved as
new tasks are learned [8]. A dynamic architectures strategy
adapts the structure of neural networks to accommodate new
tasks. For example, Progressive Neural Networks introduce
new sets of neurons for each new task while maintaining
the integrity of networks trained on previous tasks [9]. Other
variations include dynamically expandable networks, which
increase their capacity based on the complexity of incoming
tasks, allowing for scalable and flexible learning structures.
Other Memory-based Approaches focus on retaining access to
old data through replay mechanisms or experience replay. By
periodically rehearsing past instances, these techniques help
the model to preserve old knowledge while integrating new
information [10]. This can be accomplished by either storing
actual samples from previous tasks or generating synthetic
samples using generative models, which helps in overcoming
the limitations related to direct data retention.

Despite these advancements, continual learning still encoun-
ters several hurdles, including effective memory management,
scalability of the techniques, and balance between adaptability
to new knowledge and stability of the old. Recent research
creates sophisticated hybrid models that amalgamate different
strategies. For instance, integrating meta-learning with archi-
tectural advancements can enable systems to quickly adapt to
new tasks with minimal forgetting [11].

The potential applications of continual learning are exten-
sive and cover various sectors. For instance, in autonomous
driving, continual learning enables models to perpetually as-
similate new data about varying road conditions and driver
behaviors. In health care, it allows systems to adapt to new
patient data and emerging medical conditions. Additionally,
continual learning significantly enhances the personalization of
technology services, adapting systems dynamically to changes
in user preferences and behaviors. Thus continual learning
is not merely an academic concept but a practical necessity
for the deployment of robust Al systems in an ever-changing
world, ensuring that they remain adaptive and relevant.

B. Political Conflict Analysis

Scholars and professionals in conflict and security circles
focus heavily on the study of political violence. Governments
and organizations allocate significant resources to observe, un-
derstand, and forecast the complexities of social unrest, polit-
ical violence, and armed conflicts on a global scale [12]-[14].
Conflict analysis, a critical branch of international relations
and political science, examines interactions between govern-
ments, their adversaries, and civilian populations. These inter-
actions range from tangible actions and verbal confrontations
to protests, riots, government suppression, insurgencies, civil
wars, terrorism, human rights violations, genocides, criminal
activity, forced displacements, traditional and unconventional
warfare, nuclear deterrence, peacekeeping efforts, diplomatic
tensions, and collaborations.
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Fig. 1. The Overview of ConfliLPC Framework. (1) We first train the previous model (ConfliBERT) on the large-scale input texts and initialize our model

(for current tasks) the same as the previous one. (2) We do previous parameter

preservation to preserve the parameters of the trained model and compute the

loss for the previous model Lp. (3) During the current task training, we compute logits g, and gc. (4) We do logits calibration (e.g., cross entropy with
logits calibration for classification tasks) given g, and g using Logrc as the loss for the current model L. Then, the objective function drifts from L p

to Lo gradually with the annealing coefficient A(¢). (5) Finally, we perform b

ack propagation to update the parameters of the current model. BC represents

Binary Classification, MCC represents Multi-Class Classification, and MLC represents Multi-Label Classification.

Traditionally analysts have used manual coding [15] to
categorize or label specific events in texts based on predefined
criteria. This process requires labor-intensive time and costly
financial investments, depending heavily on domain experts.
To overcome these limitations, developers created automated
systems to classify and extract structured event data. However,
these systems often rely on outdated pattern recognition meth-
ods and extensive dictionaries, leading to frequent inaccuracies
and high maintenance costs.

Recent advancements in natural language processing (NLP)
have shifted the landscape, with pre-trained transformer-based
language models [16]-[18] leading the charge. Using self-
supervised learning with large volumes of unlabeled text,
these models significantly reduce the need for labor-intensive
annotation through transfer learning. Transformer models,
with their parallelized training process, handle large datasets
efficiently. Leveraging these advances, researchers developed
ConfliBERT [5], a pre-trained language model specifically de-
signed to analyze conflict and political violence. ConfliBERT
improves performance on conflict-related tasks and reduces the
need for extensive annotation. Its development involved two
steps: (1) training a BERT [17]-based model on a domain-
specific political violence corpus, and (2) evaluating the model
across 12 datasets covering various downstream tasks.

Despite its effectiveness in single-task settings, ConfliBERT
struggles in continual learning environments due to CF. CF
occurs when a model trained sequentially on new tasks over-
writes knowledge gained from earlier tasks. In political conflict
analysis, this is particularly problematic because models must
adapt to constant shifts, with new events such as protests or
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civil wars arising while maintaining an understanding of past
conflicts. The loss of previously learned information hampers
the model’s ability to analyze and predict complex, evolving
conflicts where historical context is crucial.

To tackle this challenge, we propose an approach to ad-
dress CF in ConfliBERT, ensuring the model retains prior
knowledge while learning new tasks. to improve ConfliBERT’s
capacity to handle sequential training, we enable it to adapt
to new conflict scenarios without sacrificing performance on
previously learned tasks. This enhancement strengthens the
model’s adaptability but also makes it more reliable for conflict
analysis, where the ability to retain and build upon prior
knowledge is essential for accurate and timely decisions.

III. PROBLEM STATEMENT

IndiaPoliceEvents_sents

20news (BC) oo

BBC_News (BC) insightCrime (MLC)

Single Model

IndiaPoliceEvents_sents R
Meo) insightCrime (MLC)

20news (BC) I BBC_News (BC) l = I

Single Model

Fig. 2. The Difference between Multi-tasked Learning and Continual
Learning. The Multi-tasked Learning is depicted above, while the Continual
Learning is shown below.
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Fig. 2 shows the difference between multi-tasked learning
and continual learning. It shows how multi-tasked learning
trains one model for one task simultaneously while continual
learning trains a single model for all the tasks sequentially. In
CL there will be CF while MTL does not have this problem
because in continual learning, the current model is trained
based on the previous model while in multi-tasked learning,
there is a separate model trained for each task. The detailed
differences are as follows:

Multi-tasked Learning (MTL) involves training separate
models across multiple tasks simultaneously. This approach
leverages the inherent relationships and shared features among
the tasks to enhance the performance of the model and
generalization capabilities. By training on several tasks at
once, the model learns to identify and exploit commonalities
across the tasks, which can lead to more robust representations
and prevent overfitting specific to one task. This is particularly
important in complex environments where tasks share under-
lying structures or features, allowing the model to perform
well across a broader range of tasks than if it were trained
separately on each task.

Continual Learning (CL) focuses on training a model to
handle new tasks sequentially while retaining the knowledge
from previously learned tasks, crucial in dynamic environ-
ments where new data or tasks are introduced over time. The
ability to train on one task at a time without forgetting previous
tasks (avoiding catastrophic forgetting) is vital for applications
that require the model to adapt to new conditions contin-
ually. Continual learning is especially important for long-
lived systems expected to accumulate and refine knowledge
progressively without the need for retraining from scratch.

IV. PROPOSED APPROACH

The Logits and Parameter Calibration framework for Po-
litical Conflict Analysis (ConfliLPC), comprises two essential
components: (1) Logits Calibration (LC), designed to adjust
logits to reduce logits forgetting and improve accuracy, and
(2) Parameter Calibration (PC), intended to adjust parameters
to minimize parameter forgetting. For LC, we employ the
Cross Entropy with Logits Calibration (CELC) technique
in classification tasks. The parameter calibration consists of
two key elements: (1) Previous Parameter Preservation (PPP)
focuses on maintaining parameters from earlier tasks, and
(2) Current Task Training (CTT) reduces the deviation from
previous tasks to current tasks during updates. The ConfliLPC
framework integrates these components into a novel optimiza-
tion algorithm that utilizes the Adam optimizer [19].

A. Logits Calibration

The Cross Entropy (CE) Loss [20] is a widely used loss
function for classification tasks in deep learning frameworks.
It applies a log softmax function to the output logits from
the neural network, followed by computing the negative log
likelihood (NLL) loss based on the log softmax results. The
cross entropy loss is typically defined as follows:
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Here, N denotes the total number of classes for the current
tasks. The term g, ; refers to the output logits for class ¢ from
the current model on the current tasks. The variable p; acts as
the binary label for class ¢, where p; = 1 if the input data x
belongs to class ¢, and p; = 0 otherwise. The traditional cross
entropy loss focuses only on the performance of the current
model, leading to a risk of CF as the model training progresses.
We address this by updating the previous model on the current
tasks and calculate its output logits g,,.

Drawing inspiration from LCwoF [21], we incorporate the
logits from the previous model into the cross entropy loss.
Unlike LCwoF, our approach involves adjusting the logits
calibration by adding the difference between the logits of the
current and previous models (g. ; — gp,;) to the current model’s
logits g, ; for each class. This method helps preserve crucial
logits information for each class from the previous model in
an element-wise manner. Our modified Cross Entropy with
Logits Calibration (CELC) Loss is described in (2):

N,
e exp(Ge,i + H(ge,i — Gp,i))
Legpro = — Y pilog(+ ) @
=1 > exp(qej + 1(qe.i — dp.s))

j=1

We scale the difference between the logits of the current and
previous models (g. — g,) by a weighting factor p € [0, 1], to
manage the calibration. This modified loss function enhances
the accuracy of the model throughout the training process by
either rewarding or penalizing the logits for the correct class.
Specifically, a reward is given if the logits of the correct class
qc,; exceeds qp;, and a penalty is applied if the logits of the
correct class q.; is less than g, ;. In this way, the model will
give more propensity to correct class rather than wrong class.

B. Parameter Calibration

Parameter Calibration (PC) mitigates CF by incorporating a
penalty into the training loss whenever there is a discrepancy
between the current model’s parameters and those of the
previous model. We add the squared differences between these
parameters to achieve this. The Parameter Calibration method
consists of two key components: (1) Previous Parameter
Preservation (PPP) and (2) Current Task Training (CTT).

To facilitate the transition of the target task from previous
tasks to current ones, we propose a technique that enables the
objective function to shift smoothly from Lp to Lo using an
annealing coefficient, A(¢):

Ly =A(t)Lec + (1= A(t))Lp 3)
where ¢ denotes the timestep during the training process.
The function A(t) = m, defined as the sigmoid

annealing function [22], where r is the hyperparameter that
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determines the rate of annealing and t( is the hyperparameter
that dictates the transition timesteps. Over time, this mecha-
nism allows the objective of the model to gradually transition
from previous tasks to current tasks. By implementing back-
propagation, we subsequently update the parameters of the
current model through parameter calibration. Here, Lp is the
loss of the previous task and L is the loss of the current task.

1) Previous Parameter Preservation: As illustrated in Fig.
1, the Previous Parameter Preservation (PPP) component fo-
cuses on retaining the parameters from the earlier model. This
is achieved by applying a regularization to the parameters’
posterior based on the data. PPP improves upon the RecAdam
method [7], quantifying the significance of each parameter
through the assignment of importance weights, ). Throughout
the training process, the current model significantly protects
the most critical parameters by imposing stricter penalties
on alterations to these key parameters. Our comprehensive
proposed loss function Lp is (4):

Lp = —logp(6|Dp)
~ —logp(0*|Dp) + 6(0 — 6*)T H(0*)
Q(6)(0 — 67)
~6(0 —0")TH(6*)Q0) (0 — 6%)
~ 00 — )T (NF(6") + Hprior(67))
Q(6)(0 — 07)
~ON Y FiQu(0:5 — 05)°

“4)

ij
=7y Q0 - 05)7,
i

where 4 serves as a hyperparameter for the regularization. The
Hessian matrix of the optimization objective with respect to 0
is denoted by H(6). This matrix can be approximated using
the empirical Fisher information matrix F'() [23]. N repre-
sents the total number of data inputs in Dp. Hyi0r(0) refers
to the Hessian matrix of the negative log prior probability
— log p(0). Elastic Weight Consolidation (EWC) typically dis-
regards H,,.;o-(0) and simplifies H(6) by setting its diagonal
values equal to those of F'(f). Consequently, in the final steps
of the derivation, NV F' is substituted with a constant -, viewed
as a coefficient for the quadratic penalty. Throughout the
derivation, the term — log p(@|Dp) is omitted since it remains
constant with respect to 6*. The importance weights 2(6) are
calculated based on how sensitive the squared L2 norm of the
output of the function is to changes in the parameters. The
values €2;; are derived by aggregating the gradients across the
data points as detailed in (5):

1 N
V=5 > lgi (@) (5)
k=1
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In the formula, g;; (k) W represents the
gradient of the squared L2 norm of thefjoutput of the neural
network with respect to the parameter 6;;. Here, the output
from f(zy;0) denotes the loss of the network.

As mentioned in (4), 0;; refers to the parameter in the
current model that connects pairs of neurons n; and n;
across two successive layers. 0* signifies the parameters of
the previous model, which are considered to be at a local
minimum within the parameter space as indicated in (6):

0" = argngn{—logp(ﬂDp)} (6)

2) Current Task Training with Continual Learning: During
the training process for the current task, we simultaneously
train the current model and assess the previous model using the
current tasks. In the context of continual learning, we start by
training on Task 77 and then conduct evaluations on the same
task. Subsequently, the training shifts to Task 75, followed by
evaluations on tasks 77 and 75. This process continues with
Task T3, where after training, evaluations are performed on
tasks 7%, T>, and T3, and so forth. We detail the procedure
for a specific current task here, explaining how we account
for drift from previous tasks into the current task. The output
of the neural network, which is the loss of the model, can be
described as follows:

Lo = fi(x;0¢-1) = Lepre(Q(z;04-1)), (7

where t denotes the timestep, the loss is calculated using the
CELC method, specifically designed for classification tasks.
Q(x;0;_1) is the function of both the current and the previous
models, which produces logits using data inputs x and the
model parameters 6;_; from timestep ¢t — 1.

C. ConfliLPC Algorithm

Here we integrate Logits Calibration (CELC) and Parameter
Calibration (PPP and CTT) into a new optimization algorithm,
as detailed in Algorithm 1. The logits calibration (LC) process
is outlined in lines 6 to 8 of the algorithm, while parameter
calibration (PC) is detailed in lines 9 to 16 and line 22. We
present the ConfliLPC Algorithm which combines a quadratic
penalty with importance weights and an annealing coefficient
into a comprehensive optimization algorithm. This integration
is achieved by separating these elements from the gradient
update process used in the Adam optimization algorithm [19].

Lines 9 to 14, show how to calculate €2 by initializing € as
a tensor filled with the scalar value one. The size of € is the
same as that of the parameter size of the previous model and
the current model. From line 10 to line 13, we accumulate the
gradients of the squared L2 norm of the learned neural network
over the given data inputs to obtain importance weights €2;;
for parameter 6;;. In line 14, we compute the mean value of
Q;; by dividing it by NN. Here, N is the total number of data
inputs at a given phase. In line 16, we compute the gradients
of the loss function as a weighted combination of the gradients
of Lo and Lp. In line 22, we update the network parameters
f by the gradient descent method.
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Algorithm 1 ConfliLPC

1: given initial learning rate o € R, momentum factors 8, = 0.9, fo = 0.999, ¢ = 108, pre-trained parameter vector
0* € R™, hyperparameter for the regularizer 6 € R, coefficient of the quadratic penalty v € R, hyperparameter controlling
the annealing rate r € R, hyperparameter controlling the timesteps ¢y € N.

2: initialize timestep ¢ <— 0, parameter vector 8;—y € R™, importance weights €2 <— 1, first moment vector m;—y < 0, second

moment vector v;—g < 0, schedule multiplier n;—o € R.

3: repeat

4 t—1t+1

5: x < SelectBatch(x)

6: Gt — Qeyt(,0i—1)

T Ap,t < Qp,t(xa 0*)

8: V(fe(z;0,-1)) < V(Lcere (e, dp,t)

9: Qp « Q1

10: for k< 0to N do

L ge(xx) < VI3(fe(ar; 01-1))

12: Qt (—Qt+ ||gt(l'k)H

13: end for

14: Qt — Qt/N

15: At) + 1/(1+exp(—r- (t —to))

16: gi < )\(t)Vft(.fE, 0,5_1)4-2(1 — )\(t))(Snyf(Ot_l — 0*)
17: my < Bimy—1 + (1 — B1)ge

18: v Bove—1 + (1 — B2)g?

19: My < my/(1 — B1)

20: Vg (—Ut/(l—ﬁé)

21: 7 < SetScheduleMultiplier(¢)

22: Gt — 9t_1 — T)t()\(t)aﬁlt/(\/a + €)+2(1 — )\(t))é'yQt(Gt_l — 6*))

23: until stopping criterion is met
24: return optimized parameters 6,

> update timestep

> select batch data

> compute output logits for the current model
> compute output logits for the previous model
> compute gradients

> compute importance weights after each update epochs
> compute annealing coefficient

> compute new gradients

> update biased first moment estimate

> update biased second raw moment estimate

> compute bias-corrected first moment estimate

> compute bias-corrected second raw moment estimate
> can be fixed, decay, or also be used for warm restarts
> update parameters

TABLE I TABLE II
DIFFERENT TASK SEQUENCES USED FOR 5-TASK CONTINUAL LEARNING DIFFERENT TASK SEQUENCES USED FOR 4-TASK CONTINUAL LEARNING
SETTING. SETTING.
Order # Task Sequence Order # Task Sequence
1 20news — BBC_News — IndiaPoliceEvents_sents — insightCrime — satp_relevant 1 20news — BBC_News — IndiaPoliceEvents_sents — insightCrime
2 satp_relevant — insightCrime — IndiaPoliceEvents_sents — BBC_News — 20news 30news — Indi ]_) TiceEvent nts = BBC _N S insiehtCrim
3 20news — IndiaPoliceEvents_sents — BBC_News — insightCrime — satp_relevant cws arolicetve S—Se S, —(NEWS . S‘g . ©
4 20news — IndiaPoliceEvents_sents — insightCrime — BBC_News —» satp_relevant BBC_News — 20news — IndiaPoliceEvents_sents — insightCrime
5 satp_relevant — IndiaPoliceEvents_sents — BBC_News — insightCrime — 20news BBC_News — IndiaPoliceEvents_sents — insightCrime — 20news
6 satp_relevant — IndiaPoliceEvents_sents — BBC_News — 20news — insightCrime IndiaPoliceEvents_sents — BBC_News — 20news — insightCrime

D. Forgetting

We calculate forgetting for the continual learning setting as
shown below:

1
Fer32

i=

®)

max

Accs; — Acer
t€1,....,T71( i cer.i)

where Acc means accuracy. 1" represents the total number of
tasks. ¢ and ¢ represent the task index. The forgetting results
are shown in Table III and Table IV.

V. EXPERIMENTS

In this section, we evaluate ConfliLPC on the Political
Conflict Analysis Datasets provided in ConfliBERT [5]. We
compare our model with Adam [19], EWC [7], MAS [24],
SI [8], and RecAdam [25]. Multitasked is the upper bound in
which we train all tasks at the same time. Our work follows
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IndiaPoliceEvents_sents — 20news — insightCrime — BBC_News
insightCrime — IndiaPoliceEvents_sents — 20news — BBC_News
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task incremental learning and the task id is visible during
testing.

A. Datasets

We evaluate our approach ConfliLPC on the Political Con-
flict Analysis Datasets, which is a collection of resources for
training, evaluating, and analyzing provided in ConfliBERT
[5]. It contains the following 5 different datasets:

Binary classification (BC). For identifying political news,
we collected data from BBC News [26] and the 20 News-
groups dataset [27]. These BC tasks are crucial for political
scientists to classify and filter documents containing political
and conflict events from large-scale news wires.
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TABLE III
SUMMARY OF AVERAGED METRIC SCORES (INCLUDING FORGETTING) FOR DIFFERENT METHODS UNDER PERMUTED 5-TASK ORDERS. THE AVERAGE
AND STD COLUMNS RESPECTIVELY ARE THE AVERAGE AND STANDARD DEVIATION OF THE AVERAGED SCORES FOR EACH ROW OF THE METHODS.
MULTITASKED LEARNING AS AN UPPER BOUND IS SHOWN AT THE BOTTOM. ALL OF THE RESULTS ARE THE MEDIANS OVER 5 RUNS. ALL THE METRICS
ARE ACC (ACCURACY) / FGT (FORGETTING). WINNING WITH THE HIGHEST ACCURACY AND THE LEAST FORGETTING.

Model Order 1 Order 2 | Order 3 | Order 4 | Order 5 | Order 6 Average Std
acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt
ConfliBERT + Adam jsedian 56.8/31.4 | 44.0/47.2 | 59.6/27.7 | 37.2/39.5 | 51.2/38.8 | 58.0/30.2 | 51.1/35.8 | 8.9/7.3
ConfliBERT + EWC jredian 63.7/20.4 | 48.0/30.7 | 58.0/18.0 | 47.8/25.7 | 53.2/30.2 | 56.7/29.6 | 54.6/25.8 | 6.2/5.4
ConfliBERT + MAS jjedian 66.3/23.6 | 48.5/354 | 60.1/20.8 | 52.1/29.6 | 51.1/29.1 | 54.1/32.7 | 55.4/28.5 | 6.6/5.5
ConfliBERT + SI rredian 65.1/26.7 | 47.7/40.1 | 59.4/23.6 | 49.3/33.6 | 49.5/33.0 | 55.5/35.7 | 54.4/32.1 | 6.9/6.0
ConfliBERT + RecAdam predian | 02.6/25.1 | 46.5/37.8 | 60.3/22.2 | 51.0/31.6 | S51.1/31.0 | 53.0/34.2 | 54.1/30.3 | 6.1/5.8
ConfliBERT + ConfliLPC jjeqiqn | 72.0/12.6 | 59.1/27.7 | 66.7/12.8 | 62.7/15.7 | 56.7/29.1 | 58.6/27.1 | 62.6/20.8 | 5.8/7.9
Multitasked 79.8
TABLE IV

SUMMARY OF AVERAGED METRIC SCORES (INCLUDING FORGETTING) FOR DIFFERENT METHODS UNDER PERMUTED 4-TASK ORDERS. THE AVERAGE
AND STD COLUMNS RESPECTIVELY ARE THE AVERAGE AND STANDARD DEVIATION OF THE AVERAGED SCORES FOR EACH ROW OF THE METHODS.
MULTITASKED LEARNING AS AN UPPER BOUND IS SHOWN AT THE BOTTOM. ALL OF THE RESULTS ARE THE MEDIANS OVER 5 RUNS. ALL THE METRICS
ARE ACC (ACCURACY) / FGT (FORGETTING). WINNING WITH THE HIGHEST ACCURACY AND THE LEAST FORGETTING.

Model Order 1 | Order 2 | Order 3 | Order 4 | Order 5 | Order 6 | Order 7 | Order 8 | Average Std
acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt acc/fgt | acc/fgt
ConfliBERT + Adam jsedian 70.7/13.5 | 70.3/14.6 | 71.0/13.0 | 56.3/33.1 | 68.6/16.0 | 63.4/22.2 | 56.4/33.2 | 69.2/15.5 | 65.7/20.1 | 6.3/8.5
ConfliBERT + EWC jscdian 72.2/12.4 | 69.5/21.1 | 74.2/8.7 | 56.0/33.1 | 71.2/13.7 | 62.8/24.9 | 57.5/31.4 | 69.3/15.8 | 66.6/20.1 | 6.9/9.0
ConfliBERT + MAS jredian 68.2/13.6 | 60.5/23.2 | 69.1/9.6 | 55.7/36.4 | 68.3/15.1 | 58.4/27.4 | 48.6/34.5 | 63.2/17.4 | 61.5/22.2 | 7.2/9.9
ConfliBERT + SI arsedian 67.4/28.6 | 59.3/24.7 | 68.2/25.5 | 54.5/38.3 | 67.9/20.0 | 57.8/23.1 | 47.2/31.4 | 62.4/21.5 | 60.6/26.6 | 7.4/6.0
ConfliBERT + RecAdam pseqiqn | 61.9/24.9 | 65.7/21.5 | 59.1/22.2 | 55.1/33.3 | 67.7/17.4 | 66.1/20.1 | 60.1/27.3 | 68.0/17.8 | 63.0/23.1 | 4.6/5.3
ConfliBERT + ConfliLPC jscqdian | 78.3/3.4 | 74.7/8.6 | 78.3/4.5 | 64.1/22.1 | 77.5/5.5 | 67.7/17.1 | 60.6/26.2 | 71.7/12.7 | 71.6/12.5 | 6.8/8.6
Multitasked 79.5
TABLE V

THE RESULTS OF ABLATION STUDY ON ADAM, LOGITS CALIBRATION (LC), PARAMETER CALIBRATION (PC), AND LOGITS AND PARAMETER
CALIBRATION (CONFLILPC) UNDER PERMUTED 4-TASK ORDERS. THE AVERAGE AND STD COLUMNS RESPECTIVELY ARE THE AVERAGE AND
STANDARD DEVIATION OF THE AVERAGED SCORES FOR EACH ROW OF THE METHODS. MULTITASKED LEARNING AS AN UPPER BOUND IS SHOWN AT THE
BOTTOM. ALL OF THE RESULTS ARE THE MEDIANS OVER 5 RUNS. ALL THE METRICS ARE ACC (ACCURACY).

Model Order 1 | Order 2 | Order 3 | Order 4 | Order 5 | Order 6 | Order 7 | Order 8 | Average | Std

acc acc acc acc acc acc acc acc acc acc

ConfliBERT + Adam (rerun) psedian 70.7 70.3 71.0 56.3 68.6 63.4 56.4 69.2 65.7 6.3

ConfliBERT + Adam + LC pfeqian 73.5 71.0 71.7 63.0 69.2 64.1 67.3 69.8 68.7 3.7

ConfliBERT + PC jjedian 77.8 72.5 75.1 67.6 69.5 68.5 614 71.6 70.5 5.0

ConfliBERT + ConfliLPC jjedian 78.3 74.7 78.3 64.1 71.5 67.7 60.6 71.7 71.6 6.8
Multitasked 79.5

Multi-class classification (MCC). The India Police Events
dataset [28] includes sentences from English-language articles
in the Times of India about police activity in Gujarat during
March 2002—a period marked by widespread Hindu-Muslim
violence. The labels cover five categories of police activity:
kill, arrest, fail to act, force, and any action.

Multi-label classification (MLC). The South Asia Ter-
rorism Portal (SATP: https://satp.org/) provided a manually
annotated sample of 7,445 narratives between 2011 and 2019,
focusing on incidents initiated by terrorist organizations. Of
these, 23.6% are relevant stories classified into one or more
categories such as armed assault, bombing/explosion, kidnap-
ping, and others, while the remainder are unrelated (stories
not about terrorist attacks such as arrests or armed clashes).
InSight Crime [29] contains annotated stories about organized
criminal activity in Latin America and the Caribbean. We
applied an MLC task to predict multiple crime categories
expressed in the stories, such as drug trafficking, corruption,
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and law enforcement.

B. Experimental Setup

We have implemented two experimental setups: (1) a 5-task
continual learning setting, and (2) a 4-task continual learning
setting. In the 5-task setting, we sequentially train the model
on five different tasks, in a total of 6 different orders as
shown in Table I. Similarly, in the 4-task setting, we train
sequentially on four tasks, in a total of 8 different orders as
shown in Table II. After each training phase, we assess the
performance of the model on all tasks it has been trained on
to date. For instance, if the current model is trained on the
task IndiaPoliceEvents_sents, having been previously trained
on the 20news and BBC_News tasks, we evaluate it using
instances from all three tasks. Post-training on the final task,
we report the evaluation results across all tasks encountered.
In these continual learning settings, our primary focus is on
overall classification performance. Task-specific forgetting is
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Fig. 3. Overview of the Forgetting Progress for Different Methods and Permuted Orders under Permuted 4-task Orders. The x-axis is the step and the y-axis
is the metric (accuracy). The blue line indicates the scores of the first task after training each task. The orange line corresponds to that of the second task.
The green line corresponds to that of the third task. The forgetting of our model ConfliLPC is on the rightmost column.
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gauged by the decline in performance metrics (accuracy) from
the initial to the most recent assessment of each task.

C. Results

The results are shown in Table III and Table IV. Our
experimental results show that we outperform ConfliBERT
with Adam, EWC, MAS, SI, and RecAdam models on all 5
scenarios of the Political Conflict Analysis Datasets, achieving
the best average accuracy across all models.

Under the 5-task continual learning setting, we have 6 dif-
ferent task sequences to evaluate the performance of our work
with Adam, EWC, MAS, SI, and RecAdam, the description
of task sequences is in Table I. Under the 4-task continual
learning setting, we have 8 different task sequences to evaluate
the performance of our work with Adam, EWC, MAS, SI, and
RecAdam, the description of task sequences is in Table II. We
show the result of all the sequence orders in Table III and
Table IV. From the experimental results, we can see our model
achieves the least forgetting compared with Adam, EWC,
MAS, SI, and RecAdam, we achieve the best average acc on
both the 5-task setting and 4-task setting. Compared to the
upper-bound Multitasked, our highest score even approximates
Multitasked with 1.2%. In addition, the sequence order of tasks
also matters in the experiment results because when we put
more complex tasks late in the order, the average scores will
be higher as the forgetting of simple tasks will be less. The
results of the continual learning setting show that our method
can achieve the best performance and forget less than other
methods, which demonstrates the effectiveness of our method
in addressing the CF problem in continual learning.

D. Ablation Study

ConfliLPC has two important components, Logits Cali-
bration (LC) and Parameter Calibration (PC). Thus, we do
an ablation study on these two components separately with
ConfliBERT pre-trained model 5 scenarios of the Political
Conflict Analysis Datasets. The results of the ablation study
with ConfliBERT model are shown in Table V. From Table
V, we can see both LC and PC achieve better results than the
baseline Adam. ConfliLPC achieves the best results among
all four models In most orders. Compared with Adam, LC
achieves 4.6% improvements on average measured by acc on
all 8 different orders. Compared with Adam, PC achieves 7.3%
improvements on average measured by acc on all 8 differ-
ent orders. Compared with Adam, ConfliLPC achieves 9.0%
improvements on average measured by acc on all 8 different
orders. The ablation results demonstrate the importance of both
Logit and Parameter Calibration in ConfliLPC.

VI. FORGETTING ANALYSIS FOR FOUR TASKS

ConfliPLC has the lowest forgetting in all 8 different orders.
Forgetting is analyzed by assessing the performance decrease
following each new task, as illustrated in Fig. 3. The forgetting
of our model ConfliLPC is on the rightmost column. The figure
highlights that our model consistently exhibits the lowest
level of forgetting in most cases, showcasing the stability and
plasticity of the proposed ConfliLPC model.
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VII. RELATED WORKS

ConfliBERT [5] built on previous automating analysis of
political conflict texts by pre-training specifically on a curated
corpus, significantly enhancing model performance compared
to general-purpose models like BERT [17]. However, Con-
fliBERT utilized in a fine-tuning scenario where one model
is trained for a single task. In a continual learning setting,
where data arrives sequentially, we minimize the number of
parameters stored and train a single model sequentially across
all tasks, developing a more generalized model. Yet, deep neu-
ral networks engaging in continual learning often encounter
a problem known as catastrophic forgetting. Minimizing CF
is key to this goal. Current strategies in continual learning
are grouped into three main categories: (1) Replay methods
[30], [31], (2) Regularization-based methods [4], [24], [32]-
[35], and (3) Parameter isolation methods [36], [37]. Replay
methods either preserve actual samples or generate synthetic
ones using a model. Regularization-based approaches avoid
storing direct inputs to protect privacy and reduce memory
demands. These methods introduce an additional regulariza-
tion term in the loss function to help retain prior knowledge
when assimilating new data. Parameter isolation methods
allocate distinct parameters for each task to prevent forgetting.
Additionally, semi-supervised methods in continual learning
[38] offer further enhancements. Our approach utilizes an
advanced regularization-based method incorporating LCwoF
[21] and RecAdam [25]. LCwoF modifies the traditional cross-
entropy loss by adding an exponential logit sum from prior
class classifiers to the denominator to adjust the normalization
scale, although its normalization component has inaccuracies
since its total does not sum to one. RecAdam, building on
EWC, treats all parameters uniformly, neglecting the varying
significance of different network parameters.

VIII. CONCLUSION

Integrating Logits and Parameter Calibration (LPC) with
the ConfliBERT model in the ConfliLPC framework is a
significant advancement in applying NLP to analyzing political
conflict and violence. Addressing the challenges associated
with continual learning, ConfliLPC ensures the model remains
adaptive and effective across diverse and evolving scenarios.
This capability is crucial to maintain accuracy and less forget-
ting, allowing the system to process new data streams without
losing the valuable context of historical data. The model’s
ability to fine-tune and recalibrate dynamically in response
to emerging data ensures that insights remain relevant and
actionable. Looking ahead, there is potential for expanding
the application of ConfliLPC to multilingual settings and
exploring more complex analytical tasks such as inference and
question answering.
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